首页 资讯正文

清华团队打造光学人工智能,让《三体》中的计算机成为现实

清华团队打造光学人工智能,让《三体》中的计算机成为现实

深度学习为代表的人工智能技术已在包括自动驾驶、医疗诊断、语音翻译等众多领域带来巨大的变革。随着深度学习算法的迅猛发展,人工神经网络规模的不断增大,迫切需要不断提升计算处理器的运算速度和能效。采用传统电子计算方式已经越来越难以满足未来人工智能对处理器计算性能的需求。近年来,基于光计算高速、低功耗、高并行的颠覆性优势,通过光电融合的方式构建光学神经网络与智能光电计算处理器已经成为国际信息技术前沿的热点研究领域。

然而,现有的光电智能计算技术距离实际应用还面临着以下挑战:(1)模型构架简单,现有的光学神经网络模型复杂度较低,光学非线性实现较为困难,因此模型性能与电子的人工神经网络有较大的差距;(2)系统误差难校正,光计算系统误差大小和系统复杂度成正相关,因此误差校正算法对于构建大规模智能光计算系统至关重要,然而迄今为止尚缺普适性的误差校正方法;(3)系统重构困难,现有光学神经网络结构难以重构,因此计算功能单一,而网络参数编程则依赖较为复杂的光学效应,大规模参数的快速精准写入仍存在困难。

图一:光电智能衍射计算处理器的基本原理

针对上述挑战,来自清华大学信息学院的戴琼海教授研究团队提出并构建了光电智能衍射计算处理器(Diffractive Processing Unit, DPU),能够有效地重构实现包含百万神经元的多类新型光电神经网络,通过自适应的在线训练算法实现了高性能的视觉分类任务,并验证了光电智能计算的优越性。

DPU 的构架采用了光学衍射的物理现象,能够产生大规模的光学互联,从而助力构建高复杂度的光学神经网络(图一)。此外,该光学处理器原理充分利用了光的波粒二象性,神经网络权重的调整通过控制光波传播的波前分布来实现,采用光电效应能够实现人工神经元的功能。DPU 的运行过程光计算部分则几乎承担所有的计算操作,采用高通量可编程的光电器件并结合电子计算的灵活特性,能够实现高速数据调控以及大规模网络结构和参数的编程。“在这项工作中我们定义了光电的衍射人工神经元,能够实现对衍射光场的线性加权求和以及非线性激活响应,这是构建复杂光电深度学习系统的基础。” 林星特聘研究员说到。

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。

本文链接:https://www.chinaai.com/zixun/7678.html

发表评论

评论列表(0人评论 , 11543人围观)
☹还没有评论,来说两句吧...