首页 资讯正文

边缘计算+人工智能=?

边缘计算+人工智能=?

边缘计算+人工智能=?

在5G浪潮的驱动下,智能设备自动驾驶VR/AR智能制造等对于实时性、本地性有着较强需求的场景日益丰富,边缘计算应运而生,有效提升了用户体验。但是,随着强实时数据量的迅速攀升,且数据形态更加多元,边缘计算面临的技术挑战更加复杂。在这一趋势下,融入AI能力的智能边缘计算应势而起。

边缘计算的智能化升级

在IOT时代,海量设备将接入网络,进行数据采集和用户交互。在5G和AI的乘数效应下,数据的“量”和“质”都发生了改变。

其中,“量”的变化有两个维度。一方面,数据量呈现指数级增长;另一方面,有实时性要求处理的数据迅速上升,对于将云处理的数据下沉到边缘提出要求。据IDC预测,2025年全球物联网连接数将增长至270亿个,物联网设备数量将达到1000亿台,全球数据总量预计2025年将达到163个ZB,而未来超过70%的数据和应用将在边缘产生和处理。

而“质”的变化,体现在数据形态上。从PC时代到移动时代再到IOT时代,数据类型也从结构化数据图形数据发展到多媒体数据,再到描述AI的元数据。在AI应用中,数据不仅仅被简单的存储、传输,其价值也需要深度挖掘。这就要求数据必须靠近信息源,进行本地化的智能分析与预处理。

“新型终端设备的数据产生要做预处理和消化,消化指的是做一些过滤,哪些往后台传、哪些要处理,哪些处理完要传到前端设备,这个过程必须在边缘侧完成。可以说,边缘计算非常重要,是真正支持万物智能化的关键点。” 英特尔中国研究院院长宋继强在近期召开的“未来智能边缘计算论坛”上表示。

边缘计算+人工智能=?

英特尔中国研究院院长宋继强

在“未来智能边缘计算论坛”上发表演讲

智能边缘计算是对边缘计算的智能化升级。宋继强表示,智能边缘AI5G是真正实现数据价值的关键技术转折点,三种技术将加速突破和融合,成为智能世界的新型基础设施,驱动各行各业新一轮的智能创新。”

“边缘计算强调的是计算发生的位置,是在云的边缘、网络的边缘还是设备的边缘。智能边缘计算是将智能处理能力载入边缘计算,它不是对数据进行处理、过滤或者是简单的分析,而是将AI能力融入其中。”宋继强在接受《中国电子报》等媒体采访时表示。

打通三个关键能力

边缘计算是一种场景众多高度差异化的计算模式。除了计算发生的位置,与设备的距离(是有距离还是集成在设备上)、用途、环境,都对边缘计算的架构体系有着不同的要求。要高效处理多样化的数据,并将相应数据存储在边缘的不同位置,需要效能更高的计算、存储和连接。

在提升算力方面,英特尔XPU异构整合oneAPI实现软硬协同。XPU可包含多种不同架构,包括在CPUGPU加速器FPGA中部署的标量、矢量、矩阵和空间混合架构组合。值得一提的是,英特尔最新发布的Xe GPU架构产品组合可带来计算性能的高效提升。oneAPI则是通过一套软件接口、一套功能库为开发者提供不同架构上编程的便利性,同时已经开发过的程序在架构演进过程中不需要重新开发,从而轻易地迁移到未来的架构上。

传输方面,英特尔提供了以太网、硅光子为代表的一系列技术,大幅提升数据传输能力;存储方面,英特尔独具代表性的傲腾技术,突破内存和存储瓶颈,极大地提升了数据、存储和内存的可用性经济性灵活性。英特尔为智能边缘提供的软硬融合技术实力,为云边端技术融合打下坚实的基础,引领智能边缘的进一步发展。

与此同时,英特尔也着眼于前沿技术推动智能边缘计算的发展,其中就包括对神经拟态计算等前沿技术的探索。神经拟态计算通过模拟人脑神经元的构造和神经元之间互联的机制,能在低功耗以及少量数据的条件下持续自学习,对于解决目前机器人对环境自学习自适应的挑战,是非常完美的解决方案。目前英特尔在神经拟态计算领域也取得了突破性的进展,最新的Loihi芯片已经拥有嗅觉,可以在少量训练数据的条件下识别10种有毒气味。

应用潜能逐步彰显

2020年,疫情防控和复工复产成为全球经济的两条主线。在此期间,人与信息接触的方式发生了改变,推动数字经济进一步向智能经济演进。远程办公在线医疗在线教育等智能应用井喷式发展,对智能的需求前所未有。

在接受《中国电子报》采访时,宋继强表示,智能边缘计算将在智能经济的发展过程中,有着充足的发挥空间。

远程教学远程办公中,由于传统的网络基础设施存在不平均的情况,以及缺乏智能化处理机制,通常会将所有用户的信息等同传输。但是,不同场景下的信息传输和处理存在差异性。例如,在会议讲话中,语音信息和脸部、手势的视觉信息相对重要,其他的信息属于缺乏变化或是次要元素。

“如果有智能边缘计算,可以对输入的视频信号进行差异化的编码。传输过程的总信息量没有丢失,但是需要的数据量大幅度降低。”宋继强表示。

车路协同也是一个典型的边缘计算场景。交通路口等车辆工作环境包含大量高传输量的高清视频传感器、延时很低的雷达等,除了数据导入和简单的过滤之外还需要AI处理,实现发现问题、做出决策并执行的流程。

“交通路口可以在几个方向上都有摄像头,把摄像头的数据放在边缘,将车和人三维重建到场景中,并实时跟踪其速度和轨迹。如果有足够的计算量,就可以提前预测碰撞。这些都是边缘计算才能做到的。”宋继强向本报记者表示。

机器人是智能边缘计算的典型用例,英特尔一直通过产学研合作的方式推动机器人产业的发展,推进基于5G的云边端一体化部署,机器人更加智能化,自主感知和决策能力增强。

在未来智能边缘计算论坛上,英特尔中国研究院宣布和全球顶尖的学术机构一起,联合举办为期三年的全球机器人学习室内挑战赛,旨在推进服务机器人自学习能力技术的切实突破,推动行业应用落地。同时,机器人公司搭建技术交流平台加速市场部署的英特尔“机器人创新生态”也宣布将全面升级,并对15家优质合作伙伴进行表彰。

©英特尔公司,英特尔、英特尔logo及其它英特尔标识,是英特尔公司或其分支机构的商标。文中涉及的其它名称及品牌属于各自所有者资产。

边缘计算+人工智能=?

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。

本文链接:https://www.chinaai.com/zixun/1744.html

评论