首页 百科正文

人工智能的弊端(人工智能的弊端的例子)

woniu 百科 2021-09-14 00:30:02 5353 0 智能人工智能机器ar互联网

早期,人类必须通过如轮子、火之类的工具和武器与自然做斗争。15世纪,古腾堡发明的印刷机使人们的生活发生了广泛的变化。19世纪,工业革命利用自然资源发展电力,这促进了制造、交通和通信的发展。20世纪,人类通过对天空以及太空的探索,通过计算机的发明及其微型化,进而成为个人计算机、互联网、万维网和智能手机,持续不断地向前进。过去的60年已经见证了一个世界的诞生,这个世界出现了海量的数据、事实和信息,这些数据、事实和信息必须转换为知识(其中一个实例是包含在人类基因编码中的数据,如图1.0所示)。本文介绍了人工智能学科的概念性框架,并阐述了其成功应用的领域和方法、近期的历史和未来的前景。

人工智能的弊端(人工智能的弊端的例子)

图1.0 包含在人类基因编码中的数据

人工智能的定义

在日常用语中,“人工”一词的意思是合成的(即人造的),这通常具有负面含义,即“人造物体的品质不如自然物体。但是,人造物体通常优于真实或自然物体。例如,人造花是用丝和线制成的类似芽或花的物体,它不需要以阳光或水分作为养料,却可以为家庭或公司提供实用的装饰功能。

虽然人造花给人的感觉以及香味可能不如自然的花朵,但它看起来和真实的花朵如出一辙。

另一个例子是由蜡烛、煤油灯或电灯泡产生的人造光。显然,只有当太阳出现在天空时,我们才可以获得阳光,但我们随时都可以获得人造光,从这一点来讲,人造光是优于自然光的。

最后,思考一下,人工交通装置(如汽车、火车、飞机和自行车)与跑步、步行和其他自然形式的交通(如骑马)相比,在速度和耐久性方面有很多优势。但是,人工形式的交通也有一些显著的缺点—地球上无处不在的高速公路,充满了汽车尾气的大气环境,人们内心的宁静(以及睡眠)常常被飞机的喧嚣打断。

如同人造光、人造花和交通一样,人工智能不是自然的,而是人造的。要确定人工智能的优点和缺点,你必须首先理解和定义智能。

思维是什么?智能是什么?

智能的定义可能比人工的定义更难以捉摸。斯腾伯格(R. Sternberg)就人类意识这个主题给出了以下有用的定义:智能是个人从经验中学习、理性思考、记忆重要信息,以及应付日常生活需求的认知能力。

我们都很熟悉标准化测试的问题,比如,给定如下数列:1,3,6,10,15,21。要求提供下一个数字。

你也许会注意到连续数字之间的差值的间隔为1。例如,从1到3差值为2,从3到6差值为3,以此类推。因此问题正确的答案是28。这个问题旨在衡量我们在模式中识别突出特征方面的熟练程度。我们通过经验来发现模式。

不妨用下面的数列试试你的运气:

a.1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ?

b.2, 3, 3, 5, 5, 5, 7, 7, 7, 7, ?

既然已经确定了智能的定义,那么你可能会有以下的疑问。

(1)如何判定一些人(或事物)是否有智能?

(2)动物是否有智能?

(3)如果动物有智能,如何评估它们的智能?

大多数人可以很容易地回答出第一个问题。我们通过与其他人交流(如做出评论或提出问题)来观察他们的反应,每天多次重复这一过程,以此评估他们的智力。虽然我们没有直接进入他们的思想,但是相信通过问答这种间接的方式,可以为我们提供内部大脑活动的准确评估。

如果坚持使用问答的方式来评估智力,那么如何评估动物智力呢?如果你养过宠物,那么你可能已经有了答案。小狗似乎记得一两个月没见到过的人,并且可以在迷路后找到回家的路。

小猫在晚餐时间听到开罐头的声音时常常表现得很兴奋。这只是简单的巴甫洛夫反射的问题,还是小猫有意识地将罐头的声音与晚餐的快乐联系起来了?

关于动物智力,有一则有趣的轶事:大约在1900年,德国柏林有一匹马,人称“聪明的汉斯”(Clever Hans),据说这匹马精通数学(见图1.1)。

人工智能的弊端(人工智能的弊端的例子)

图1.1 “聪明的汉斯”(Clever Hans)— 一匹马做演算?

当汉斯做加法或计算平方根时,观众都惊呆了。此后,人们观察到,如果没有观众,汉斯的表现不会很出色。事实上,汉斯的天才在于它能够识别人类的情感,而非精通数学。

马一般都具有敏锐的听觉,当汉斯接近正确的答案时,观众们都变得相对兴奋,心跳加速。也许,汉斯有一种出奇的能力,它能够检测出这些变化,从而获得正确的答案。虽然你可能不愿意把汉斯的这种行为归于智能,但在得出结论之前,你应该参考一下斯腾伯格早期对智能的定义。

有些生物只体现出群体智能。例如,蚂蚁是一种简单的昆虫,单只蚂蚁的行为很难归类在人工智能的主题中。但是另一方面,蚁群对复杂的问题显示出了非凡的解决能力,如从巢到食物源之间找到一条最佳路径、携带重物以及组成桥梁。集体智慧源于个体昆虫之间的有效沟通。第12章在对高级搜索方法进行讨论时,将相对较多地探讨涌现智能和集群智能。脑的质量大小以及脑与身体的质量比通常被视为动物智能的指标。海豚在这两个指标上都与人类相当。海豚的呼吸是自主控制的,这可以说明其脑的质量过大,还可以说明一个有趣的事实,即海豚的两个半脑交替休眠。

在动物自我意识测试中,例如镜子测试,海豚得到了很好的分数,它们认识到镜子中的图像实际上是它们自己的形象。海洋世界等公园的游客可以看到,海豚可以玩复杂的戏法。这说明海豚具有记住序列和执行复杂身体运动的能力。

使用工具是智能的另一个“试金石”,并且这常常用于将直立人与先前的人类祖先区别开来。海豚与人类都具备这个特质。例如,在觅食时,海豚使用深海海绵(一种多细胞动物)来保护它们的嘴。显而易见,智能不是人类独有的特性。在某种程度上,许多生命形式是具有智能的。

你应该问自己以下问题:“你认为有生命是拥有智能的必要先决条件吗?”或“无生命物体,例如计算机,可能拥有智能吗?”人工智能宣称的目标是创建可以与人类的思维媲美的计算机软件和(或)硬件系统,换句话说,即表现出与人类智能相关的特征。一个关键的问题是“机器能思考吗?”更一般地来说,你可能会问,“人类、动物或机器拥有智能吗?”

在这个节点上,强调思考和智能之间的区别是明智的。思考是推理、分析、评估和形成思想和概念的工具。并不是所有能够思考的物体都有智能。智能也许就是高效以及有效的思维。许多人对待这个问题时怀有偏见,他们说:“计算机是由硅和电源组成的,因此不能思考。”或者走向另一个极端:“计算机表现得比人快,因此也有着比人更高的智商。”真相很可能存在于这两个极端之间。

正如我们所讨论的,不同的动物物种具有不同程度的智能。我们将阐述人工智能领域开发的软件和硬件系统,它们也具有不同程度的智能。我们对评估动物的智商不太关注,尚未发展出标准化的动物智商测试,但是对确定机器智能是否存在的测试非常感兴趣。

也许拉斐尔(Raphael)的说法最贴切:“人工智能是一门科学,这门科学让机器做人类需要智能才能完成的事。”

图灵测试

上一节中提出“你如何确定智能”以及“动物有智能吗?”这两个问题已经得到了解决。第二个问题的答案不一定是简单的“是”或“不是”—一些人比另一些人聪明,一些动物比另一些动物聪明。机器智能也遇到了同样的问题。

阿兰·图灵(Alan Turing)寻求可操作方法来回答智能的问题,欲将功能(智能能做的事情)与实现(如何实现智能)分离开来。

补充资料

抽象是一种策略,这种策略忽略了对象或概念的实现(例如内部的工作),这样,你就可以获得更清晰的人造物及其与外部世界关系的图像。换句话说,你可以将这个对象当作一个黑盒子,只关注对象的输入和输出(见图1.2)。

人工智能的弊端(人工智能的弊端的例子)

图1.2 黑盒子的输入和输出

通常,抽象是一种有用而必要的工具。例如,如果你想学习如何驾驶,把车当作一个黑盒子可能是一个好主意。你不必一开始就努力学习自动变速器和动力传动系统,而是可以专注于系统输入,例如油门踏板、刹车、转向信号灯以及输出,如前进、停车、左转和右转。数据结构的课程也使用抽象,因此如果想了解栈的行为,你可以专注于基本的栈操作,比如pop(弹出一项)和push(插入一项),而不必陷入如何构造一个列表的细节(例如,使用线性链表还是循环链表,或使用链接链表还是连续分配空间)。

图灵测试的定义

阿兰·图灵提出了两个模拟游戏。在模拟游戏中,一个人或实体表现得仿佛是另一个人。在第一个模拟游戏中,一个人在一个中央装有帘子的房间中,帘子的两侧各有一人,其中一侧的人(称为询问者),必须确定另一侧的人是男人还是女人。询问者(其性别无关紧要)通过询问一系列的问题来完成这个任务。游戏假定男性可能会在他的回答中撒谎,而女性总是诚实的。为了使询问者无法从语音中确定性别,通过计算机而不是讲话的方式进行交流,如图1.3所示。如果在帘子的另一侧是男人,并且他成功地欺骗了询问者,那么他就赢了。

人工智能的弊端(人工智能的弊端的例子)

图1.3 第一个图灵模拟游戏

图灵测试的原始形式是,一个男人和一个女人坐在窗帘后面,询问者必须正确地识别出其性别(图灵可能得到那个时代流行游戏的启发,发明了这个测试。这个游戏也促使了他进行机器智能测试)。正如埃里希·弗罗姆(Erich Fromm)所写的[8]:男女平等,但不一定要相同。例如,不同性别的人具有不同的关于颜色和花朵的知识,花在购物上的时间也不同。区分男女与智能问题有什么关系?图灵认为,可能存在不同类型的思考,了解并容忍这些差异是很重要的。图1.4表示了图灵测试的第二个版本。

人工智能的弊端(人工智能的弊端的例子)

图1.4 第二个图灵模拟游戏

第二个游戏更适合人工智能的研究。询问者还是在有帘子的房间里。这一次,帘子后面可能是一台计算机或一个人。这里的机器扮演男性的角色,偶尔会撒谎,但人是一直诚实的。询问者提问,然后评估答案,确定他是和人交流,还是和机器交流。如果计算机成功地欺骗了询问者,那么它就通过了图灵测试,因此也就被认为是有智能的。

众所周知,在执行算术计算时,机器比人类快很多倍。如果帘子后面的“人”可以在几微秒内得到了三角函数的泰勒级数近似的结果,那么就可以不费吹灰之力辨别出在帘子后面的是计算机而不是人。

自然,计算机可以在任意的图灵测试中成功欺骗询问者的机会非常小。为了得到有效的智能“晴雨表”,这个测试要执行许多次。同样,在这个图灵原始版本的测试中,人和计算机都在帘子后面,询问者必须正确地辨别它们。

补充资料

图灵测试

没有计算机系统通过了图灵测试。然而,1990年,慈善家Hugh Gene Loebner举办了一项比赛,这项比赛旨在实现图灵测试。第一台通过图灵测试的计算机将被授予金牌以及$ 100 000的罗布纳奖金。同时,每年在比赛中表现最好的计算机将被授予铜牌以及大约$ 2000的奖金。

在图灵测试中,你会提出什么问题?考虑以下示例:

·(1 000 017)?是多少?像这样的计算可能不是一个好主意。记住,计算机试图欺骗询问者。计算机可能不会在几分之一秒内做出响应,给出正确答案,它可能会有意地花费更长的时间,也许还会犯错误,因为它“知道”人类不熟悉这些计算。

· 当前的天气情况如何?假设计算机可能不会向窗外看一眼,因此你可能会试着问一下天气。但是,计算机通常连接着万维网,因此在回答之前,它也连接到了天气网站。

· 你害怕死亡吗?因为计算机难以伪装人的情绪,所以你可能会提出这个问题或其他的类似问题:“黑色给你的感觉如何?”或者“坠入爱河的感觉如何?”但是,记住,你现在是在试图判定智能,人类的情绪也许不是有效的智能“晴雨表”。

图灵预料到会有许多人反对他在最初论文中所提出的“机器智能”的想法,其中一个就是所谓的“鸵鸟政策反对”。人们相信思考的能力使人变成万物之灵。承认计算机能够思考,这可能挑战了这个仅由人类享有的崇高的栖息地。

许多人认为,正是人的灵魂让人们可以思考,如果我们创造出拥有这种能力的机器,那么将会篡夺“上帝”的权威。图灵反驳了这个观点,他提出人们仅仅是准备等待具有灵魂禀赋的容器来执行“上帝”的旨意。最后,我们提到洛甫雷斯伯爵夫人(Lady Lovelace)的反对意见(在文献中她经常被称为第一个计算机程序员)。

在评论分析式引擎时,她无比轻松地说“单单这台机器不可能给我们惊喜”。她重申了许多人的信念:一台计算机不能执行任何未预编程的活动。图灵反对这种意见,说机器一直都让他很惊喜。他坚持认为,这种反对意见的支持者认同人类的智慧可以即时推断给定事实或行动的所有后果。图灵的最初论文在收集上述异议以及其他的反对意见时提到了这些读者。

图灵测试的争议和批评

内德·布洛克(Ned Block)认为,英语文本是以ASCII编码的,换句话说,是用计算机内一系列的0和1表示的。因此,一个特定的图灵测试,也就是一系列的问题和答案,可以存储为一个非常大的数。例如,假设图灵测试的长度有一个上限,在测试中,“are you afraid of dying?(你害怕死亡吗?)”开始的前三个字符作为二进制数字存储,如图1.5所示。

人工智能的弊端(人工智能的弊端的例子)

图1.5 使用ASCII代码存储图灵测试的开始字符

假设典型的图灵测试持续一个小时,在此期间,测试者大约提出了50个问题,并得到了50个答案,那么对应于测试的二进制数应该非常长。现在,假设有一个很大的数据库,储存了所有的图灵测试,这些图灵测试包含了50个或更少的已有合理答案的问题。

然后,计算机可以用查表的方法来通过测试。当然,一个能够处理这么大量数据的计算机系统还未存在。但是,如果计算机通过了图灵测试,Block问:“你认为这样的机器有智能吗?你感觉舒服吗?”换句话说,Block的批评意见是,图灵测试可以用机械的查表方法而不是智能来通过图灵测试。

约翰·塞尔(John Searle)对图灵测试的批评更为根本。想象一下,询问者像人们预料的那样询问问题—但是,这次用的是中文。另一个房间里的那个人不懂中文,但是拥有一本详细的规则手册。虽然中文问题以潦草的笔迹呈现,但是房间里的人会参考规则手册,根据规则处理中文字符,并使用中文写下答案,如图1.6所示。

人工智能的弊端(人工智能的弊端的例子)

图1.6 中文室的争论

询问者获得了语法上正确、语义上合理的问题的回答。这意味着房间里的人通晓中文吗?如果你的回答是“不”,那么人和中文规则手册的结合通晓中文吗?答案依然是“不”—房间里的人不是在学习或理解中文,而仅仅是在处理符号。同样,计算机运行程序,接收、处理以及使用符号回答,而不必学习或理解符号本身的意思是什么。

塞尔也要求我们设想,如果不是单个人持有规则手册这样的场景:在一个体育馆中,人们互相传递便条。当一个人接到这样的一张便条时,规则手册将确定这个人应该生成一个输出,还是仅仅传递信息给体育馆中的另一个人,如图1.7所示。

人工智能的弊端(人工智能的弊端的例子)

图1.7 中文室争论的变体

现在,中文的知识存在于何处?属于全体人,还是属于体育馆?

思考最后一个例子。描绘出一个确实通晓中文的人的大脑,如图1.8所示。这个人可以接收用中文提出的问题,并准确地用中文进行解释和回答。

人工智能的弊端(人工智能的弊端的例子)

图1.8 中文说话者用中文接收和回答问题

同样,中文的知识存在于何处?存在于单个神经元中,还是存在于这些神经元的集合中?(它必须存在于某个地方!)Block和Searle对图灵测试进行批评的关键点在于,图灵测试仅从外部观察,不能洞察某个实体的内部状态。也就是说,我们不应该期望通过将拥有智能的智能体(人或机器)视为黑盒来了解到一些关于智能的新东西。但是,这也并不总是正确的。19世纪,物理学家欧内斯特·卢瑟福(Ernest Rutherford)通过用α粒子轰击金箔,正确地推断出物质的内部状态——它主要由空白空间组成。

他预测,这些高能粒子要么穿过了金箔要么稍微偏转。结果与他的原子轨道理论是一致的:原子由轨道电子包围着的致密核心组成。这是我们当前的原子模型,许多学过高中化学的人对此非常熟悉。Rutherford通过外部观察成功地了解了原子的内部状态。

总之,定义智能很难。正是由于定义智能以及判定“智能体”是否拥有这一属性很困难,因此图灵开发了图灵测试。在论文中,他含蓄地指出,任何能够通过图灵测试的智能体必然拥有“脑能力”来应对任何合理的、相当于人们在普遍意义上接受的人类水平的智能挑战。

本文节选自《人工智能(第2版)》

人工智能的弊端(人工智能的弊端的例子)

本书基于人工智能的理论基础,向读者展示全面、新颖、丰富多彩且易于理解的人工智能知识体系。本书给出诸多的示例、应用程序、全彩图片和人物轶事,以激发读者的阅读和学习兴趣;还引入了机器人机器学习的相关高级课程,包括神经网络、遗传算法、自然语言处理、规划和复杂的棋盘博弈等。

版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。

本文链接:https://www.chinaai.com/baike/10082.html

发表评论

评论列表(0人评论 , 5353人围观)
☹还没有评论,来说两句吧...